Rabu, 26 Maret 2014

Komputasi Modern





BAB I
PENDAHULUAN
Komputasi Modern merupakan sebuah sistem yang akan menyelesaikan masalah matematis menggunakan komputer dengan cara menyusun algoritma yang dapat dimengerti oleh komputer yang berguna untuk menyelesaikan suatu masalah. Dalam komputasi modern terdapat perhitungan dari pencarian solusi dari masalah. Perhitungan dari komputasi modern adlah akurasi,kecepatan,problem,volume dan besar kompleksitas. Dalam penggunaan praktis, biasanya berupa penerapan simulasi komputer atau berbagai bentuk komputasi lainnya untuk menyelesaikan masalah-masalah dalam berbagai bidang keilmuan, tetapi dalam perkembangannya digunakan juga untuk menemukan prinsip-prinsip baru yang mendasar dalam ilmu. Bidang ini berbeda dengan ilmu komputer (computer science), yang mengkaji komputasi, komputer dan pemrosesan informasi. Bidang ini juga berbeda dengan teori dan percobaan sebagai bentuk tradisional dari ilmu dan kerja keilmuan. Dalam ilmu alam, pendekatan ilmu komputasi dapat memberikan berbagai pemahaman baru, melalui penerapan model-model matematika dalam program komputer berdasarkan landasan teori yang telah berkembang, untuk menyelesaikan masalah-masalah nyata dalam ilmu tersebut. Komputasi modern menghitung dan mencari solusi dari masalah yang ada, yang menjadi perhitungan dari komputasi modern adalah : 1. Akurasi (bit, Floating poin) 2. Kecepatan (Dalam satuan Hz) 3. Problem volume besar (Down sizing atau paralel) 4. Modeling (NN dan GA) 5. Kompleksitas (Menggunakan teori Big O).
BAB II
TEORI

Sejarah komputer modern dimulai dengan dua teknologi yang terpisah- perhitungan otomatis dan dapat di program-tapi tidak ada satu perangkat pun yang dapat dikatakan sebagai komputer, karena sebagian penerapan yang tidak konsisten istilah tersebut. Contoh-contoh awal perangkat penghitung mekanis termasuk sempoa (yang berasal dari sekitar 150-100 SM).  Seorang pahlawan dari Alexandria (sekitar 10-70 AD) membangun sebuah teater mekanis yang diadakan bermain berlangsung 10 menit dan dioperasikan oleh sebuah sistem yang kompleks dengan tali dan drum yang dipakai sebagai sarana untuk memutuskan bagian dari mekanisme. Ini adalah inti dari programmability. Salah satu tokoh yang sangat mempengaruhi perkembangan komputasi modern adalah John von Neumann (1903-1957), Beliau adalah ilmuan yang meletakkan dasar-dasar komputer modern.Von Neumann telah menjadi ilmuwan besar abad 21. Von Neumann memberikan berbagai sumbangsih dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer  yang di salurkan melalui karya-karyanya . Beliau juga merupakan salah satu ilmuwan yang terkait dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu. Sejarah singkat dari perjalanan hidup dari Von Neumann , dilahirkan di Budapest, Hungaria pada 28 Desember 1903 dengan nama Neumann Janos. Dia adalah anak pertama dari pasangan Neumann Miksa dan Kann Margit.Nama keluarga diletakkan di depan nama asli. Sehingga dalam bahasa Inggris, nama orang tuanya menjadi Max Neumann. Pada saat Max Neumann memperoleh gelar, maka namanya berubah menjadi Von Neumann. Setelah bergelar doktor dalam ilmu hukum, dia menjadi pengacara untuk sebuah bank. Pada tahun 1903, Budapest merupakan  tempat lahirnya para manusia genius dari bidang sains, penulis, seniman dan musisi. Von Neumann belajar berbagai tempat dan beberapa tempatnya di Berlin dan Zurich. Di tempat itu beliau mendapatkan diploma pada bidang teknik kimia pada tahun 1926. Pada tahun yang sama dia mendapatkan gelar doktor pada bidang matematika dari Universitas Budapest. Keahlian Von Neumann terletak pada bidang teori game yang melahirkan konsep seluler automata, teknologi bom atom, dan komputasi modern yang kemudian melahirkan komputer. Kegeniusannya dalam bidang matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya. Beliau pernah mengajar di Berlin dan Hamburg, Von Neumann pindah ke Amerika pada tahun 1930 dan bekerja di Universitas Princeton pada saat yang bersamaan Von Neumann menjadi salah satu pendiri Institute for Advanced Studies. Von Neumann sangat tertarik pada hidrodinamika dan kesulitan penyelesaian persamaan diferensial parsial nonlinier yang digunakan, Von Neumann kemudian beralih dalam bidang komputasi. Von Neumann menjadi seorang konsultan pada pengembangan komputer ENIAC, dia merancang konsep arsitektur komputer yang masih dipakai sampai sekarang. Arsitektur Von Nuemann adalah seperangkat komputer dengan program yang tersimpan (program dan data disimpan pada memori) dengan pengendali pusat, I/O, dan memori.
·         Mekanika kuantum
Von Neumann selain genius juga seorang pemikir yang kreatif. Ia mampu mengubah konsep atau pemikiran orang lain menjadi sesuatu yang lebih baik, lengkap dan logis. Hal inilah yang dilakukannya pada teori mekanika kuantum. Mekanika kuantum berurusan dengan perilaku partikel atomik dan hukum-hukum yang mengaturnya. Pada masa itu, ada dua teori yang saling berkompetisi untuk mendeskripsikan dunia atom. Pertama, mekanika gelombang yang digagas Erwin Schrodinger. Menurutnya, sebuah elektron dalam atom hidrogen, analog dengan tali pada instrument musik. Dengan teori ini, Schrodinger mengembangkan persamaan gelombang untuk elektron yang secara tepat mampu memprediksi perilaku elektron. Teori yang kedua bernama mekanika matriks yang dikembangkan Werner Heisenberg, Max Born dan Pascual Jordan. Teori ini mengatakan, nilai posisi dan momentum suatu partikel dapat dideskripsikan konstruksi matematika menggunakan aljabar matriks. Kedua teori ini tampak berbeda di mata banyak orang. Dua persepsi mengenai masalah yang sama. Namun Von Neumann mampu membuktikan, kedua sistem tersebut ternyata ekivalen secara matematis alias sama tetapi berbeda bentuk. Namun Von Neumann ingin mengembangkan teori yang lebih baik lagi dari keduanya. Ia ingin mengembangkan yang lebih fundamental dan powerful, sehingga lahirlah konsep “ruang Hilbert abstrak”. Konsep ini merupakan struktur matematika untuk mekanika kuantum. Formulasi ini ternyata lebih mudah digunakan orang lain untuk melakukan penelitian mekanika kuantum.
·         Bom atom
Kepiawaian Von Neumann tidak hanya di bidang yang abstrak seperti mekanika kuantum, namun juga dalam bidang teknik seperti pengembangan bom atom di Los Alamos pada tahun 1943. Pada saat itu, Amerika Serikat merasa ketakutan jika Jerman bisa membuat bom atom, sehingga dibentuklah tim yang beranggotakan ilmuwan-ilmuwan ternama untuk merancang sebuah bom atom, sesuatu yang dikatakan banyak orang sebagai iblis penghancur, di Los Alamos. Kontribusi Von Neumann dalam projek bom atom adalah pengembangan matematikanya dan kontribusinya pada implosion bomb.

·         Jenis-jenis Komputasi Modern

1. Mobile Computing atau Komputasi Bergerak
2. Grid Computing
3. Cloud Computing atau Komputasi Awan

MANFAAT KOMPUTASI MODERN

Komputasi modern ini melakukan perhitungan dengan menggunakan komputer yang canggih dimana pada computer tersebut tersimpan sejumlah algoritma untuk menyelesaikan masalah perhitungan secara efektif dan efisien.
Dari sana dapat terlihat bahwa komputasi modern dapat dimanfaatkan untuk memecahkan masalah-masalah seperti dibawah ini:
Modeling (NN & GA)
Modeling merupakan suatu hal yang penting dalam melakukan suatu perhitungan yang rumit. Bayangkan saja jika kita dihadapi dalam suatu masalah perhitungan yang banyak dan kompleks, tetapi tidak ada model matematika yang kita miliki. Perhitungan akan berjalan berantakan dan tidak akan mendapatkan hasil yang akurat. Maka dari itu komputasi modern membutuhkan modeling sebelum melakukan perhitungan.

Problem Volume Besar (Down Sizzing atau paralel)
Data yang besar tentu membutuhkan suatu cara penyelesaian yang khusus. Karena data yang besar dapat menjadi masalah jika ada yang terlewatkan. Oleh karena itu digunakan metode Down Sizzing atau paralel pada komputasi modern untuk menangani masalah volume yang besar. Dengan metode ini data yang besar diparalelkan dalam pengolahannya sehigga dapat diorganisir dengan baik.

Akurasi (big, Floating point)
Akurasi tentu merupakan masalah yang paling penting dalam memecahkan masalah. Karena itu pada komputasi modern dilakukan perhitungan bagaimana bisa menghasilkan suatu jawaban yang akurat dari sebuah masalah. Tentu kita pernah mendengar tipe data floating point yang biasa digunakan untuk menyimpan data numerik dalam bentuk pecahan. Tipe data tersebut memiliki range penyimpanan numerik yang besar, sehingga dapat digunakan oleh komputer untuk melakukan komputasi yang akurat.

Kompleksitas (Menggunakan Teori big O)
Komputasi modern dirancang untuk menangani masalah yang kompleks, sehingga diterapkan pada komputer. Dengan menggunakan teori Big O, maka komputasi modern dapat melakukan perhitungan untuk memecahkan masalah kompleksitas yang kerap dihadapi.

Kecepatan (dalam satuan Hz)
Manusia pasti menginginkan masalah dapat diselesaikan dengan cepta. Karena itu perhitungan masalah kecepeatan adalah suatu hal yang penting. Komputasi harus dapat dilakukan dalam waktu yang cepat ketika mengolah suatu data. Sehingga perlu metode kecepatan untuk mengolah perhitungan dalam waktu singkat.

BAB III
ANALISA

Implementasi yang jelas terlihat ada pada ilmu Bioinformatika. Berikut akan dibahas bagaimana bioinformatika itu termasuk dalam implementasi dalam bidang ilmu komputasi modern.

Pengertian Bioinformatika
Bioinformatika, sesuai dengan asal katanya yaitu “bio” dan “informatika”, adalah gabungan antara ilmu biologi dan ilmu teknik informasi (TI). Pada umumnya, Bioinformatika didefenisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi. Ilmu ini merupakan ilmu baru yang yang merangkup berbagai disiplin ilmu termasuk ilmu komputer, matematika dan fisika, biologi, dan ilmu kedokteran, dimana kesemuanya saling menunjang dan saling bermanfaat satu sama lainnya.
Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun demikian, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis) sudah dilakukan sejak tahun 1960-an.
Ilmu bioinformatika lahir atas insiatif para ahli ilmu komputer berdasarkanartificial intelligence. Mereka berpikir bahwa semua gejala yang ada di alam ini bisa diuat secara artificial melalui simulasi dari gejala-gejala tersebut. Untuk mewujudkan hal ini diperlukan data-data yang yang menjadi kunci penentu tindak-tanduk gejala alam tersebut, yaitu gen yang meliputi DNA atau RNA. Bioinformatika ini penting untuk manajemen data-data dari dunia biologi dan kedokteran modern. Perangkat utama Bioinformatika adalah program software dan didukung oleh kesediaan internet.
Perkembangan teknologi DNA rekombinan memainkan peranan penting dalam lahirnya bioinformatika. Teknologi DNA rekombinan memunculkan suatu pengetahuan baru dalam rekayasa genetika organisme yang dikenala bioteknologi. Perkembangan bioteknologi dari bioteknologi tradisional ke bioteknologi modren salah satunya ditandainya dengan kemampuan manusia dalam melakukan analisis DNA organisme, sekuensing DNA dan manipulasi DNA.
Sekuensing DNA satu organisme, misalnya suatu virus memiliki kurang lebih 5.000 nukleotida atau molekul DNA atau sekitar 11 gen, yang telah berhasil dibaca secara menyeluruh pada tahun 1977. Kemudia Sekuen seluruh DNA manusia terdiri dari 3 milyar nukleotida yang menyusun 100.000 gen dapat dipetakan dalam waktu 3 tahun, walaupun semua ini belum terlalu lengkap. Saat ini terdapat milyaran data nukleotida yang tersimpan dalam database DNA, GenBank di AS yang didirikan tahun 1982. Bioinformatika (bahasa Inggris: bioinformatics) adalah ilmu yang mempelajari penerapan teknik komputasional untuk mengelola dan menganalisis informasi biologis. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya. Contoh topik utama bidang ini meliputi basis data untuk mengelola informasi biologis, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan bentuk struktur protein maupun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.
Membicarakan bioinformatika, tak dapat lepas dari proses lahirnya bidang tersebut. Sebagaimana diketahui, bioteknologi dan teknologi informasi merupakan dua di antara berbagai teknologi penting yang mengalami perkembangan signifikan dalam beberapa tahun terakhir ini. Bioteknologi berakar dari bidang biologi, sedangkan perkembangan teknologi informasi tak dapat dilepaskan dari matematika. Umumnya biologi dan matematika dianggap adalah database utama dalam biologi molekuler, yang dikelola oleh NCBI (National Center for Biotechnology Information) di AS.

Cabang ilmu Bioinformatika
Bioinformatika merupakan suatu bidang interdisipliner. Banyak cabang-cabang disiplin ilmu yang terkait dengan Bioinformatika sehingga banyak pilihan bagi yang ingin mendalami Bioinformatika. Beberapa bidang yang terkait dengan Bioinformatika antara lain:
1.    Biophysics
Biophysics adalah sebuah bidang interdisipliner yang mengaplikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society).
2.    Computational Biology
Computational biology merupakan bagian dari Bioinformatika yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel.
3.    Medical Informatics
Medical informatics adalah sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan dan implementasi dari struktur dan algoritma untuk meningkatkan komunikasi, pengertian dan manajemen informasi medis.
4.    Cheminformatics
Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute’s Sixth Annual Cheminformatics conference).
5.    Genomics
Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih.
6.    Mathematical Biology
Mathematical biology menangani masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware.
7.    Proteomics
Proteomics berkaitan dengan studi kuantitatif dan kualitatif dari ekspresi gen di level dari protein-protein fungsional itu sendiri. Yaitu: “sebuah antarmuka antara biokimia protein dengan biologi molekul”.
8.    Pharmacogenomics
Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada identifikasi dari target-target obat.
9.    Pharmacogenetics
Pharmacogenetics adalah bagian dari pharmacogenomics yang menggunakan metode genomik atau Bioinformatika untuk mengidentifikasi hubungan-hubungan genomik.

Perkembangan dan Penerapan Bioinformatika
Dunia memasuki babak baru yang diberi nama borderless world atau dunia tanpa batas. Perkembangan teknologi yang tiada henti memungkinkan manusia untuk berekspresi dan saling berkompetisi untuk menemukan bidang ilmu pengetahuan dan teknologi yang baru.
Salah satu perkembangan ilmu yang menggabungkan aspek teknologi informasi (TI) dan aspek biologi adalah Bioinformatika. Disiplin ilmu yang merupakan salah satu topik paling hangat dibicarakan dewasa ini dalam sejarahnya tak lepas dari perkembangan bioteknologi di era tahun 70-an dimana seorang ilmuwan AS melakukan inovasi dalam mengembangkan teknologi DNA rekombinan sehingga pada akhirnya lahir perusahaan bioteknologi pertama di dunia, yaitu Genentech di AS. Perusahaan ini memproduksi protein hormon insulin dalam bakteri yang dibutuhkan penderita diabetes dimana selama ini insulin hanya bisa didapatkan dalam jumlah sangat terbatas dari organ pankreas sapi.
Definisi Bioinformatika menurut Fredj Tekaia dari Institut Pasteur adalah: “metode matematika, statistik dan komputasi yang bertujuan untuk menyelesaikan masalah-masalah biologi dengan menggunakan sekuen DNA dan asam amino dan informasi-informasi yang terkait dengannya”.
Salah satu pencapaian besar dalam metode Bioinformatika adalah selesainya proyek pemetaan genom manusia (Human Genom Project). Selesainya proyek raksasa tersebut menyebabkan bentuk dan prioritas dari riset dan penerapan Bioinformatika berubah. Secara umum dapat dikatakan bahwa proyek tersebut membawa perubahan besar pada sistem hidup kita, sehingga sering disebutkan –terutama oleh ahli biologi—bahwa kita saat ini berada di masa pascagenom.
Tahun 1997, Ian Wilmut dari Roslin Institute dan PPL Therapeutics Ltd, Edinburg, Skotlandia, berhasil mengklon gen manusia yang menghasilkan faktor IX (faktor pembekuan darah), dan memasukkan ke kromosom biri-biri. Diharapkan biri-biri yang selnya mengandung gen manusia faktor IX akan menghasilkan susu yang mengandung faktor pembekuan darah. Jika berhasil diproduksi dalam jumlah banyak maka faktor IX yang diisolasi dari susu harganya bisa lebih murah untuk membantu para penderita hemofilia.

Kesimpulan
Dari bahasan diatas, dapat diambil sebuah kesimpulan bahwa ilmu Komputasi Modern itu dapat diterapkan dalam berbagai disiplin ilmu seperti ilmu Bioinformatika ini. Jadi, tidak menutup kemungkinan ilmu Komputasi Modern ini dapat berkembang lebih pesat menjamuri berbagai disiplin ilmu lainnya.


Tidak ada komentar:

Posting Komentar